19 research outputs found

    Intuitive Robot Teleoperation through Multi-Sensor Informed Mixed Reality Visual Aids

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Mobile robotic systems have evolved to include sensors capable of truthfully describing robot status and operating environment as accurately and reliably as never before. This possibility is challenged by effective sensor data exploitation, because of the cognitive load an operator is exposed to, due to the large amount of data and time-dependency constraints. This paper addresses this challenge in remote-vehicle teleoperation by proposing an intuitive way to present sensor data to users by means of using mixed reality and visual aids within the user interface. We propose a method for organizing information presentation and a set of visual aids to facilitate visual communication of data in teleoperation control panels. The resulting sensor-information presentation appears coherent and intuitive, making it easier for an operator to catch and comprehend information meaning. This increases situational awareness and speeds up decision-making. Our method is implemented on a real mobile robotic system operating outdoor equipped with on-board internal and external sensors, GPS, and a reconstructed 3D graphical model provided by an assistant drone. Experimentation verified feasibility while intuitive and comprehensive visual communication was confirmed through a qualitative assessment, which encourages further developments.Peer reviewe

    A walking assistant using brakes and low cost sensors

    Get PDF
    Smart Walkers are a category of robotic assistive devices particularly useful for the elderly. These systems help the users in locomotion and with respect to the classical walkers, reduce the risk of fall. This work presents a new system that has been developed using low-cost time of flight laser sensors in place of the more expensive laser scanners. Control of direction is performed by guiding the user by mean of brakes on the rear wheels. Other sensors include an inertial measurement unit with magnetometer and an interface with an external absolute localization system. Preliminary trials have been performed on a graphical and physical simulator implemented in the V-Rep framework

    Use of Natural Agents and Agrifood Wastes for the Treatment of Skin Photoaging

    Get PDF
    Photoaging is the premature aging of the skin caused by repeated exposure to ultraviolet (UV) rays. The harmful effects of UV rays—from the sun or from artificial sources—alter normal skin structures and cause visible damage, especially in the most exposed areas. Fighting premature aging is one of the most important challenges of the medical landscape. Additionally, consumers are looking for care products that offer multiple benefits with reduced environmental and economic impact. The growing requests for bioactive compounds from aromatic plants for pharmaceutical and cosmetic applications have to find new sustainable methods to increase the effectiveness of new active formulations derived from eco-compatible technologies. The principle of sustainable practices and the circular economy favor the use of bioactive components derived from recycled biomass. The guidelines of the European Commission support the reuse of various types of organic biomass and organic waste, thus transforming waste management problems into economic opportunities. This review aims to elucidate the main mechanisms of photoaging and how these can be managed using natural renewable sources and specific bioactive derivatives, such as humic extracts from recycled organic biomass, as potential new actors in modern medicine

    Auto-Calibration Methods of Kinematic Parameters and Magnetometer Offset for the Localization of a Tracked Mobile Robot

    No full text
    This paper describes an automatic calibration procedure adopted to improve the localization of an outdoor mobile robot. The proposed algorithm estimates, by using an extended Kalman filter, the main kinematic parameters of the vehicles, such as the wheel radii and the wheelbase as well as the magnetometer offset. Several trials have been performed to validate the proposed strategy on a tracked electrical mobile robot. The mobile robot is aimed to be adopted as a tool to help humanitarian demining operations

    A Small Versatile Electrical Robot for Autonomous Spraying in Agriculture

    No full text
    Boosting innovation and research in the agricultural sector is crucial if farmers are asked to produce more with less. Precision agriculture offers different solutions to assist farmers in improving efficiency and reducing labor costs while respecting the legal requirements. Precision spraying enables the treatment of only the plants that require it, with the right amount of products. Our research group has developed a solution based on a reconfigurable vehicle with a high degree of automation for the distribution of plant protection products in vineyards and greenhouses. The synergy between the vehicle and the spraying management system we developed is an innovative solution with high technological content, and attempts to account for the current European and global directives in the field of agricultural techniques. The objectives of our system are the development of an autonomous vehicle and a spraying management system that allows safe and accurate autonomous spraying operations

    A walking assistant using brakes and low cost sensors

    No full text
    Smart Walkers are a category of robotic assistive devices particularly useful for the elderly. These systems help the users in locomotion and with respect to the classical walkers, reduce the risk of fall. This work presents a new system that has been developed using low-cost time of flight laser sensors in place of the more expensive laser scanners. Control of direction is performed by guiding the user by mean of brakes on the rear wheels. Other sensors include an inertial measurement unit with magnetometer and an interface with an external absolute localization system. Preliminary trials have been performed on a graphical and physical simulator implemented in the V-Rep framework

    Low-Altitude Terrain-Following Flight Planning for Multirotors

    No full text
    Surveying with unmanned aerial vehicles flying close to the terrain is crucial for the collection of details that are not visible when flying at higher altitudes. This type of missions can be applied in several scenarios such as search and rescue, precision agriculture, and environmental monitoring, to name a few. We present a strategy for the generation of low-altitude trajectories for terrain following. The trajectory is generated taking into account the morphology of the area of interest, represented as a georeferenced Digital Surface Model (DSM), while ensuring a safe separation from any obstacle. The surface model of the scenario is created by using a UAV-based photogrammetry software, which processes the images acquired during a preliminary mission at high altitude. The solution was developed, tested, and verified both in simulation and in real scenarios with a multirotor equipped with low-cost sensing. The experimental results proved the validity of the generation of trajectories at altitudes lower than most of the works available in the literature. The images acquired during the low-altitude mission were processed to obtain a high-resolution reconstruction of the area as a representative application result
    corecore